The extended Killing form:
By demanding that

$$\langle [Z,X],X \rangle + \langle X, [Z,Y] \rangle = 0$$

holds for elements $X, Y, Z \in \hat{g}$,
one can derive:
 $\langle X^{a}[n], X^{b}[m] \rangle = \delta^{ab} \delta_{nem,a}$
 $\langle X^{a}[n], \hat{K} \rangle = 0$ and $\langle \hat{k}, \hat{K} \rangle = 0$
 $\langle X^{a}[n], \hat{L}_{o} \rangle = 0$ and $\langle L_{o}, \hat{K} \rangle = -1$
The only unspecified norm is $\langle L_{o}, L_{o} \rangle$
which one takes by definition to be
 $\langle L_{o}, L_{o} \rangle = 0$
Zet the components of the vector \hat{x} be
the eigenvalues of a state that is simultaneous
eigenvector of the generators:
 $\hat{x} = (\hat{x}(H'), \hat{x}(H^{2}), \dots, \hat{x}(H'); \hat{x}(R); \hat{x}(-L_{o}))$
 $\rightarrow \hat{x} = (\hat{x}, K_{a}; K_{a})$
Scalar product induced by alended Killing form
 $(\hat{x}, \hat{n}) = (\lambda, M) + K_{a}M_{a} + K_{a}M_{a}$

Simple roots, the Cartan matrix and
Dynkin diagrams
Basis of simple roots is given by finite
simple roots
$$\alpha_i$$
 and
 $\alpha_{o:=} (-\theta_i \theta_i) = -\theta + S$
where θ is the highest root of g .
 \Rightarrow set of positive roots is:
 $\hat{\Delta}_{+} = \{\alpha + nS \mid n > 0, \alpha \in A\} \cup \{\alpha \mid \alpha \in \Delta_{+}\}$
Indeed, for $n > 0$ and $\alpha \in \Delta$,
 $\alpha + nS = \alpha + n\kappa_{0} + n\theta = n\kappa_{0} + (n-1)\theta + (\theta + \alpha)$
 \Rightarrow coefficients of expansion in terms of
finite simple roots non-negative
Given a set of affine simple root, we can
define "extended Cartan matrix"
 $\hat{A}_{ij} = (\alpha_{i}, \alpha_{j}) \quad 0 \le i, j \le r$
where affine coroots are given by
 $\hat{\alpha}_{i}^{r} = \frac{2}{|\hat{\alpha}|^{1}} (\alpha_{i}, 0; n) = \frac{1}{|\alpha|^{1}} (\alpha_{i}, 0; n) = (\alpha_{i}^{r} 0; \frac{2}{|\kappa|}n)$

As for simple roots, the hot is omitted
over the simple proots, e.g.
$$\kappa_0^{\nu} = \alpha_0$$
 $\kappa_i^{\nu} = (\alpha_i^{\nu}; 0; 0)$ $i \neq 0$
 \hat{A}_{ij} contains often row and column:
 $(\alpha_0, \alpha_j^{\nu}) = -(0, \alpha_j^{\nu}) = -\sum_{i=1}^{r} a_i(\alpha_i, \alpha_i^{\nu})$
 \rightarrow gives rise to "optended Dynkin diagram":
Dynkin diagram of \hat{a}_j is obtained from
the one of α_j by addition of extra node
representing $\alpha_0 \rightarrow linked$ to α_i -nodes
by \hat{A}_{0i} \hat{A}_{i0} lines, e.g. for $\hat{A}:$
 $(1:1)$ $(2i1)$ $(2i1)$ $(2i1)$ $(2i1)$ $(2i1)$ $(2ii)$
The zeroth mark a_0 is defined to be 1.
 $\rightarrow a_0^{\nu} = a_0 \frac{|M_0|^2}{2} = 1$
By construction the extended Cartan matrix
satisfies : $\sum_{i=0}^{\nu} a_i \hat{A}_{ij} = \sum_{i=0}^{\nu} \hat{A}_{ij} \cdot a_j^{\nu} = 0$

The imaginary root can be written as:

$$S = \sum_{i=0}^{r} a_i v_i = \sum_{i=0}^{r} a_i^* v_i^*$$
Similarly, the dual Coxeter number reads

$$h^* = \sum_{i=0}^{r} a_i^*$$
Fundamental weights:
Fundamental weights $\{\hat{\omega}_i\}, 0 \le i \le r \text{ are}$
dual to simple coroots
 $\implies \hat{\omega}_i = (\omega_i, a_i^*; 0) \quad (i \ne 0)$
 $\hat{\kappa}$ eigenvalue is fixed by the condition
 $(\hat{\omega}_i, \alpha_0^*) = 0 \quad (i \ne 0)$
The zeroth fundamental weight must have
zero scalar product with all α_i 's and
satisfy $(\hat{\omega}_0, \alpha_0^*) = 1$
 $\implies \hat{\omega}_0 = (0i1; 0) \quad basic fundamental
weight''$
Thus we get
 $\hat{\omega}_i = a_i^* \hat{\omega}_0 + \omega_i \quad where \quad \omega_i = (\omega_i; 0; 0)$

Affine weights can be expanded as

$$\hat{\lambda} = \sum_{i=0}^{r} \lambda_{i} \hat{\omega}_{i} + lS , l \in \mathbb{R}$$

$$\rightarrow k_{:=} \hat{\lambda}(R) = \sum_{i=0}^{r} a_{i}^{r} \lambda_{i} \quad \text{'level''}$$
This relation can also be derived by:

$$(\hat{\lambda}, S) = K_{\Lambda} n_{S} + n_{\Lambda} k_{S}^{\Lambda \circ} = \hat{\lambda}(R)$$

$$= \sum_{i=0}^{r} a_{i}^{r} (\hat{\lambda}, \kappa)^{r}) = \sum_{i=0}^{r} a_{i}^{r} \lambda_{i}$$
where we used $S = \sum_{i=0}^{r} a_{i}^{r} \kappa_{i}^{r}$.

$$\rightarrow \lambda_{o} = \hat{\lambda}(R) - \sum_{i=1}^{r} a_{i}^{r} \lambda_{i} \quad (a_{o} = 1)$$
Thus we get

$$\lambda_{o} = K - (\lambda, \beta)$$
Affine weights will generally be given by

$$\hat{\lambda} = [\lambda_{o}, \lambda_{i}, - \cdots, \lambda_{r}]$$
(this notation does not keep track of

$$L_{o} \text{ eigenvalue}$$
For instance,

$$\omega_{o} = [1, 0, \cdots, 0], \quad \omega_{i} = [0, 1, \cdots, 0], \quad \hat{\omega}_{v} = [0, 0, \cdots, 1]$$

Moreover, we have

$$\alpha_i = [\hat{A}_{i0}, \hat{A}_{i1}, \dots, \hat{A}_{in}]$$

Finally, the "affine Weyl vector" is defined
 $\alpha_i = \sum_{i=0}^{\infty} \hat{\omega}_i = [1, 1, \dots, 1], \hat{\rho}(\hat{R}) = h^*.$
Integrable highest-weight representations:
IHWR's of \hat{q}_i are those representations
whose projections onto the $\alpha(x)$ -algebra
associated with root $\hat{\alpha}$ are finite
 $\sin(x) - algebra:$
 $E = E^{-\alpha}[n], F = E^{-\alpha}[-n], H = \hat{k} - \alpha \cdot H[o]$
 $\implies [E,F] = H, [H,E] = 2E, [H,F] = -2F$
One usually takes $n = 1$.
Then, finiteness of $\sin(x)$ representations
gives that any weight \hat{x}'_i in $M_{\hat{x}}$
satisfies:
 $(\hat{x}', \hat{x}_i) = -(p_i - q_i) = 0, 1, \dots, r \quad (*x)$
for some positive integers p_i, q_i .